
Simulating Language: Lab 9 Worksheet
Download bayes_U18.py from the usual place.This simulation features a replication of
the Culbertson & Smolensky model of learning biases for Greenberg’s Universal 18.

Figure 1: Universal 18: typologyThe code...

Overview
The model uses Bayesian inference to predict the types of grammars learners will
infer given (1) a set of counts of [Adj-N, N-Adj, Num-N, N-Num] utterances and (2)
their prior expectations in terms of variation and ordering combinations. The first
part of code imports what we’ll need to use the binomial and beta distributions, to
do logs and exponentials, and to generate random numbers of various kinds.

The input data
The input consists of counts of [Adj-N, N-Adj, Num-N, N-Num] with 40 total per
modifier type. Whether the input is skewed toward pre- or post-nominal modifiers Training counts:

condition 1: [28,12,28,12]
condition 2: [12,28,12,28]
condition 3: [12,28,28,12]
condition 4: [28,12,12,28]

for each phrase type depends on the condition, as shown in the table.
As in your previous lab, we’ll use a grid of probabilities to describe the space of

possible generating grammars. This time, we’ll need to use the grid twice–once for
the probability of Adj-N (vs N-Adj), and again for the probability of Num-N (vs.
N-Num). → Check out training_data. How

would you access just the counts for
condition 2? Also take a look at the grid.
How is it different from the one you used in
the previous lab?

#Training data is a list of lists of counts for each condition

pattern 1 pattern 2 pattern 3 pattern 4

(Adj-N,Num-N) (N-Adj,N-Num) (N-Adj,Num-N) (Adj-N,N-Num)

training_data = [[28,12,28,12],[12,28,12,28],[12,28,28,12],[28,12,12,28]]

set up the grid

grid_granularity = 100 # granularity of grid

possible_p = []

for i in range(1,grid_granularity):

possible_p.append(i/(grid_granularity+0.))

Likelihood
The likelihood here is calculated using the binomial distribution, the same you The binomial distribution is the same

you’d use to figure out the likelihood of
some number of heads countsH out of t
coin tosses, for a fair or biased coin.

binomial(countsH |pH , t) =
(

t
c

)
pc(p− 1)t−c

used to calculated the likelihood of a particular sequence of word 0’s and word 1’s
in the previous lab. Only difference is that here we don’t care what order they were
heard in, just about the number of Adj-N out of all Adj trials, and the number of
Num-N out of all Num trials.

→ Check out U18_likelihood. Notice
that it returns log probabilities. Calculate
the likelihood of getting 28 Adj-N counts
out of a total of 40 when the underlying
probability of Adj-N according to the
grammar is 0.7 compared to 0.3.

def U18_likelihood(data,p_AdjN,p_NumN):

’’’Calculates log likelihood of data, (where data are counts representing

number of Adj-N out of total Adj instances and

number of Num-N out of total Num instances)

given point probability of Adj-N, and Num-N

’’’

loglikelihood = [];

loglikelihood_AdjN = binom.logpmf(data[0],data[0]+data[1],p_AdjN)

loglikelihood_NumN = binom.logpmf(data[2],data[2]+data[3],p_NumN)

loglikelihood = loglikelihood_AdjN + loglikelihood_NumN

return loglikelihood

simulating language: lab 9 worksheet 2

Prior
The prior in this model has two parts. One part you know about already: regu-
larization as encoded by the parameters of the beta distribution. In the last lab you
used a single parameter, alpha, for a single symmetrical beta distribution. Here we
want two separate asymmetrical beta distributions–favoring either probabilities close
to one or close to zero, but not both. → Why do we need asymmetrical beta

distributions in this case?

Figure 2: The four components

Figure 3: Example beta distributions
with: (a=10, b=10), (a=15, b=3), (a=15,
b=0.1) for Adj-N, and the reverse for
Num-N

The two parameters of the beta distribution are (annoyingly) called alpha and beta.
To get the second part of the prior–the part which favors particular combinations of
orders (i.e., Adj-N with Num-N) we need to promote or penalize particular parts of
the two dimension grammar space. We can do this by defining four “components"
using different combinations of alpha and beta, with alpha constrained to be higher
than beta–Fig. 3 illustrates why. Then, when we calculate the prior probability of any
grammar, it will actually be the sum of its probability given the beta distributions
governing p(Adj-N) and p(Num-N) for each component, weighted by the probability
of that component. The latter is determined by g. If the probability of a given com-
ponent (e.g., g[4]) is low, then even grammars very likely to be generated by it will
have a low prior probability.

→ Take a look at the four components in the
prior. Can you see why they are defined by
those combinations of alpha and beta?

→ Each component–a combination of two
beta distributions–can in principle generate
any grammar, that is any pair p(Adj-N),
p(Num-N). Which component assigns the
highest probability to the pair (0.8,0.8)?
How about (0.4,0.9)?

def U18_prior(g, a, b, p_AdjN, p_NumN):

’’’

Calculates the log prior probability of a given p_AdjN and p_NumN given a set

of parameters.

This is a sum over the probabilities given by each mixture component.

Parameter are: g (set of four mixture weights), a(lpha), b(eta) (Beta shape

parameters)

’’’

pattern1_component = [a,b,a,b] # higher prob for Adj-N, Num-N

pattern2_component = [b,a,b,a] # higher prob for N-Adj, N-Num

pattern3_component = [b,a,a,b] # higher prob for N-Adj, Num-N

pattern4_component = [a,b,b,a] # higher prob for Adj-N, N-Num

components = [pattern1_component,pattern2_component,pattern3_component,

pattern4_component]

logprior=[]

for i in range(0,4): # loop over all four components

logprior_i_Adj = beta.logpdf(p_AdjN,components[i][0],components[i][1])

logprior_i_Num = beta.logpdf(p_NumN,components[i][2],components[i][3])

logprior_i = logprior_i_Adj + logprior_i_Num

logprior.append(logprior_i)

a+b+... in log space = log(exp(a)+exp(b)+...)

logprior = log((g[0]*exp(logprior[0])) + (g[1]*exp(logprior[1])) + (g[2]*exp(

logprior[2])) + (g[3]*exp(logprior[3])))

return logprior

Figure 4: Individual learner results
used to fit the model parameters.

The optimal prior parameters
The parameters of the prior are alpha, beta, g. The first two (called a, and b in the
code) encode the regularization bias. The higher a is relative to b, the more regu-
larization. The third, g is a set of weights for the four components, summing to 1.
These parameters were fit to the experimental data, yielding:

gamma alpha, beta

fit_parameters = [[0.6293,0.3706,0.0001,0],16.5, 0.001]

simulating language: lab 9 worksheet 3

Posterior
The posterior distribution over grammars can now be calculated using the likeli-
hood and the prior with the fit parameters. → Given the fit parameters, will the model

predict a weak or strong regularization
bias? What does the model predict the
posterior probability of a grammar like
(0.8,0.2) will be? Why?

def U18_posterior(g,a,b,data):

’’’Calculates the log posterior probability of a set of counts

for all possible p_AdjN, p_NumN combinations,

given prior parameters g, a(lpha), b(eta)

’’’

posterior = []

for p_a in range(len(possible_p)):

for p_n in range(len(possible_p)):

lik_i = U18_likelihood(data,possible_p[p_a],possible_p[p_n])

prior_i = U18_prior(g,a,b,possible_p[p_a],possible_p[p_n])

posterior.append(lik_i+prior_i)

return posterior

Figure 5: Distribution of grammars
predicted by the model.

Plot the results
The model can now be used to generate predicted learning outcomes; given some
input data, and the prior parameters, we can generate sampled grammars and
plot them in the two-dimensional grammar space we’ve be using. Fig. 5 shows
this as reported in the original Culbertson & Smolensky paper. You can use the
U18_roulette_wheel function to reproduce this. This function is similar to those
you’ve previously used to sample probabilities. The difference is that this func-
tion samples pairs of p(Adj-N), p(Num-N) probabilities, and it lets you specify how
many such samples you want. You’ll notice there’s also a normalization function
normalize_log_distribution which takes log probabilities output by the posterior and
makes them a proper (non-log) probability distribution for plotting. → What does the choice function do?

Hint: it’s similar to the function random

.random(), which generates a random
number, but takes two arguments.

def U18_roulette_wheel(g,a,b,data,num_samps):

’’’Generates a random sample of grammars (p_AdjN, p_NumN pairs)

with probability of selection being proportional to posterior probability

’’’

post = U18_posterior(g,a,b,data); # calculate posterior given training data

and prior parameters

post = normalize_log_distribution(post) # normalize --> probability

distribution

make a grid of all possible p_AdjN, p_NumN combinations at the granularity

specified

grid_adj = []

grid_num = []

for p_a in range(len(possible_p)):

for p_n in range(len(possible_p)):

grid_adj.append(possible_p[p_a])

grid_num.append(possible_p[p_n])

grid = zip(grid_adj,grid_num) # combine them because posterior probability is

for the combination

samples some grammars!

grammars = []

for i in range(0,num_samps):

r=choice(a=range(0,len(grid)),p=post) # choose an index from the grid

according to it’s posterior probability

grammars.append(grid[r])

return grammars

simulating language: lab 9 worksheet 4

Questions

1. The plotting function below takes sampled grammars from each of the four ex-
perimental conditions and plots them in the 2D grammar space.

import pylab as plt

def plot_grammars(g_1,g_2,g_3,g_4):

’’’

Plot grammars sampled from posterior

(results of multiple U18_roulette_wheel() calls)

’’’

col = []

for i in range(0,4):

col.append([i for g in range(0,len(g_1))])

plt.title("Sampled grammars")

plt.xlabel("P(Num-N)");plt.ylabel("P(Adj-N)")

plt.xlim(0,1);plt.ylim(0,1)

x = [g[1] for g in g_1] + [g[1] for g in g_2] + [g[1] for g in g_3] + [g[1]

for g in g_4]

y = [g[0] for g in g_1] + [g[0] for g in g_2] + [g[0] for g in g_3] + [g[0]

for g in g_4]

plt.scatter(x,y,c=col)

plt.show()

Generate samples g_1,g_2,g_3,g_4 using function calls like:

g_1=U18_roulette_wheel(g=fit_parameters[0],a=fit_parameters[1],b=fit_parameters

[2],data=training_data[0],num_samps=100)

Then call the plotting function to plot them. Does your plot look like Fig. 5?

2. What does it mean that the highest value of g is for component 1? Why do you
think that might be the highest given the population of learners tested in the
experiment? Come up with a new set of g values that you think would more
accurately reflect the typology (e.g., in Fig. 1) and redo the samples and plot. Did
it turn out as you expected?

3. What do you think would happen if the regularization bias were not as strong?
Change the a,b parameters and see if you were right.

Extra credit: Iterating the model

The remaining functions in U18_bayes.py are for iterating the model–taking the orig-
inal training data, generating posterior probability distributions for all four condi-
tions, sampling some grammars from each posterior and counting the number of
each pattern type that results. Then, generating some new training data from one of
the sampled grammars from each condition to pass on to the next generation. And
so on.

The first function classifies a given grammar as one of the four patterns. So if a
learner acquires (0.7,0.8) that would be classified as a pattern 1 grammar. We’ll need
this to track the counts of each pattern type over generations.

simulating language: lab 9 worksheet 5

def U18_classify(p_AdjN,p_NumN):

’’’Returns pattern type given (p_AdjN,p_NumN) pair.

’’’

if p_AdjN > 0.5 and p_NumN > 0.5: return 1

if p_AdjN < 0.5 and p_NumN < 0.5: return 2

if p_AdjN < 0.5 and p_NumN > 0.5: return 3

if p_AdjN > 0.5 and p_NumN < 0.5: return 4

else: return 0

The second function generates training data given a grammar by taking sampled
counts from a binomial distribution. We’ll need this to create new training data to
pass on to the next generation of learners.

def U18_produce(p_AdjN,p_NumN):

’’’Returns counts of Adj-N,N-Adj,Num-N,N-Num given (p_AdjN,p_NumN) pair.

’’’

counts=[]

AdjN = binomial(n=40,p=p_AdjN) # number of Adj-N out of n trials with p=p_AdjN

NumN = binomial(n=40,p=p_NumN) # number of Num-N out of n trials with p=p_NumN

counts.extend([AdjN, 40-AdjN, NumN, 40-NumN])

return counts

And finally, a pretty horrendous looking function does the iterating. → This function returns a list of lists. Each
list in there tracks the counts for one of the
four patterns over generations. If you ran
3 generations there’d be three numbers in
each list representing how many of each
pattern resulted from learning in that
generation.

→ There are four loops. The outermost loop
goes through the generations (as many as
the user specifies).

The second loop goes through each condition
for the current generation, samples some
grammars from the posterior for that
condition and picks one of them to generate
new training data from, to pass on to the
next generation.

The third loop classifies all the sampled
patterns.

The fourth loop puts the counts of each
pattern for the current generation into the
value of the function to be output.

def U18_iterate(starting_data,g,a,b,generations,num_samps):

’’’Iterates from starting data consisting of counts of Adj-N, Num-N

Returns number of each pattern type left out of num_samps*4 in each generation

.

Steps:

(1) get samples from each condition given starting_data

(2) pick random grammar from each set of samples and use to generate new

starting_data for that condition

(3) count the number of each patterns resulting from those samples

(4) REPEAT

’’’

pattern_tracer=[[],[],[],[]] # value of the function, each sublist tracks

count of each pattern type over generations

for gen in range(0,generations):

patterns_g=[] # accumulator for pattern types in each sample for the

current generation

new_data=[[],[],[],[]] # to be used as starting_data in the subsequent

generation

for each condition, get sample of grammars, generate new training data,

count patterns...

for i in range(0,4):

samps_i = U18_roulette_wheel(g,a,b,data=starting_data[i],num_samps=

num_samps) # get sample of grammars for current condition

r = random.randint(0,num_samps-1)# pick a random index from samps

training_g = samps_i[r] # get the grammar at index r

new_data[i] = U18_produce(training_g[0],training_g[1]) # use grammar

to generate new starting data for current condition

now for each grammar in the sample, classify it and add pattern to

the accumulator

for s in range(0,len(samps_i)):

patterns_g.append(U18_classify(samps_i[s][0],samps_i[s][1]))

simulating language: lab 9 worksheet 6

go through pattern accumulator and count each type for the current

generation

for i in range(0,4):

pattern_tracer[i].append(patterns_g.count(i+1)) # add the set of

patterns for current condition to list

starting_data=new_data # make the new training data the starting data

return pattern_tracer

To do some iterating, call the function with the following arguments. It will take
awhile, and you’ll notice that the function you have in U18_bayes.py has some print
statements so you know what it’s up to while you’re waiting.

counts=U18_iterate(starting_data=training_data,g=fit_parameters[0],a=

fit_parameters[1],b=fit_parameters[2],generations=3,num_samps=100)

After that’s done, use the plotting function below to see which patterns stick
around and which die out over the generations. Do you think this is a realistic re-
sult? Why or why not?

def plot_counts(counts,generations):

’’’

Plot count of grammars over generations (output of U18_iterate() call)

’’’

m = (max(counts[0]),max(counts[1]),max(counts[2]),max(counts[3]))

lim = max(m)+50

plt.title("Counts of pattern type over generations")

plt.xlim(1,generations);plt.ylim(0,lim)

plt.xlabel("Generation");plt.ylabel("Count")

plt.xticks(range(1,generations+1))

for i in range(0,4):

plt.plot(range(1,generations+1),counts[i],label=’pattern ’+str(i+1))

plt.legend(loc=’upper left’,fontsize=12)

plt.show()

	The code...

